

3A Charge/Discharge Power Bank SOC Integrated With Digital Tube Driver And TYPE_C Protocol

1. Features

- Charge /discharge with synchronous switch
 - Charge /discharge with 3A current by synchronous switch
 - ♦ Up to 93% boost efficiency
 - ♦ Up to 92% charging efficiency
 - ♦ Built-in power path management supports charging and discharging at the same time
 - ♦ Supports line compensation
- Charge
 - ♦ Adjusts charging current automatically to adapt to different load capacity adapters
 - Supports TYPEC port 3A, MICRO B port 2A charging current
 - ♦ Supports 4.20V, 4.30V 4.35V, 4.40V batteries
- Battery indicators
 - Built-in 14bits ADC and accurate coulomb calculation method
 - Supports digital tube display, 1A/2A outlet identification
 - Supports selecting battery initial capacity by external PIN
 - ♦ Supports self calibration of battery capacity
- Others
 - ♦ Built-in illuminator driver
 - ♦ Supports NTC
 - Automatically load insertion and removal detection
 - Supports Type-C DRP protocol and single port input/output
 - Supports mobile phone charging current intelligent identification of DCP protocol
- Low-power dissipation
 - Enter standby mode automatically with light load
 - Standby power consumption is less than 150µA
- Simplified BOM
 - ♦ Integrated switch power MOSFETs
 - ♦ Single inductor for charging and discharging
 - ♦ Built-in various digital tube drive circuits
- Multiple protection, high reliability
 - \diamond Output over current, over voltage and short

circuit protection

- ♦ Input over voltage protection
- Battery over charge, over discharge and over current protection
- ♦ Over temperature protection
- \diamond Vin transient withstand up to 16V
- In-depth customization
 - ♦ Flexible and low-cost customized program
- Package: 5mm*5mm, QFN32

2. Applications

- Power Bank
- Mobile phones, tablets and other portable devices
- Hydrator/hand warmer

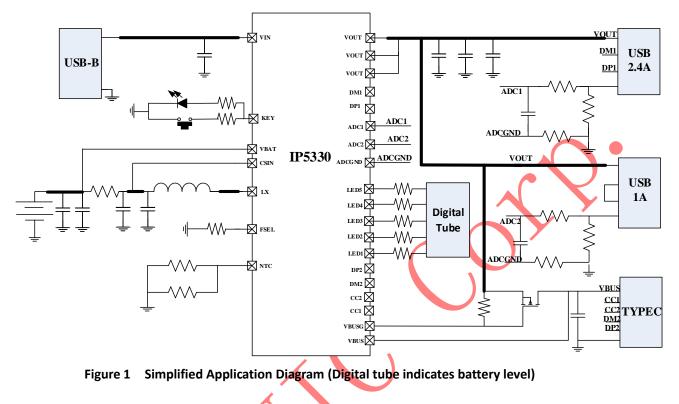
3. Description

IP5330 is a multi-functional power management SOC for total solution on Power Bank. It also integrates with boost converter, lithium battery charging management and battery level indicators.

IP5330 is highly integrated with abundant functions, which makes the total solution size minimized and BOM costed down.

IP5330 requires only one inductor to achieve buck and boost functions, and can support low-cost inductors and capacitors.

The synchronous boost system of IP5330 provides rated 3A output current with conversion efficiency up to 93%. When there is no load, it will automatically enter the standby state, and the static current will drop to less than 150uA.


IP5330's switch charging system supplies 3A charging current with charging efficiency up to 92%. According to the IC temperature and input voltage, IP5330 can intelligently adjust charging current.

IP5330 contains 14bits ADC, which can accurately measure battery's voltage and current. The built-in coulomb meter algorithm of IP5330 can accurately obtain the battery power information.

IP5330 can support digital tube display and illuminator function.

Typical Application

4. Pin Definition

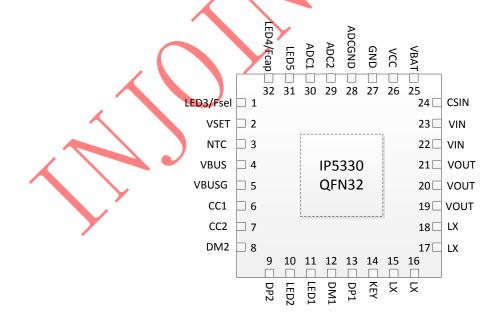


Figure 2 IP5330 Pin Assignments

Pin Num	Pin Name	Description				
1	LED3/Fsel	Digital tube driver pin3/Key selection Pin				
2	VSET	Full battery voltage setting (4.2V/4.3V/4.35V/4.4V)				
3	NTC	NTC function pin				
4	VBUS	VBUS charging power detection pin				
5	VBUSG	VBUS charging input PMOS control pin				
6	CC1	CC1 line on Type-C port				
7	CC2	CC2 line on Type-C port				
8	DM2	DM data line on DCP2				
9	DP2	DP data line on DCP2				
10	LED2	Digital tube driver pin2				
11	LED1	Digital tube driver pin1				
12	DM1	DM data line on DCP1				
13	DP1	DP data line on DCP1				
14	KEY	Key input pin, multiplexed WLED illumination function				
15	LX	DCDC switch node, connect to inductor				
16	LX	DCDC switch node, connect to inductor				
17	LX	DCDC switch node, connect to inductor				
18	LX	DCDC switch node, connect to inductor				
19	VOUT	DCDC 5V output pin				
20	VOUT	DCDC 5V output pin				
21	VOUT	DCDC 5V output pin				
22	VIN	DCDC 5V input pin				
23	VIN	DCDC 5V input pin				
24	CSIN	System power supply and battery voltage sampling pin				
25	VBAT	Battery voltage sampling pin				
26	VCC	LDO 3.3V output pin				
27	GND	System grand				
28	ADCGND	ADC sampling grand				
29	ADC2	ADC sampling pin2				
30	ADC1	ADC sampling pin1				
31	LED5	Digital tube driver pin5				
32	LED4/Fcap	Digital tube driver pin4/Battery initialization capacity setting pin				
33	EPAD/PGND	Power and dissipation ground, maintain good contact with GND				

5. IP Series Products List

10	Cha /Discł	-		Features							Package	
IC Part No.	Dis- charge	Charge	LED Num	Lighti ng	Keys	I2C	DCP	USB C	QC Certifi cate	PD3.0/ PPS	Package	Compa tibility
IP5303	1.0A	1.2A	1,2	٧	v	-	-	-	-	-	eSOP8	z
IP5305	1.0A	1.2A	1,2,3,4	٧	v	-	-	-	-	-	eSOP8	PIN2PIN
IP5306	2.4A	2.1A	1,2,3,4	٧	٧	-	-	-	-		eSOP8	Ы
IP5206	2A(Max)	1.5A	3,4,5	٧	v	-	-	-	-	-	eSOP16	z
IP5108E	2.0A	1.0A	3,4,5	٧	٧	-	-	-	-	-	eSOP16	PIN2PIN
IP5108	2.0A	2.0A	3,4,5	٧	٧	٧	-	-			eSOP16	Id
IP5207	1.2A	1.2A	3,4,5	٧	٧	-	-	-	-) -	QFN24	
IP5207T	1.2A	1.2A	1,2,3,4	٧	v	٧	V	-		-	QFN24	PIN2PIN
IP5109	2.1A	2.1A	3,4,5	٧	٧	٧	-)-	-	QFN24	PIN2
IP5209	2.4A	2.1A	3,4,5	٧	٧	V	v	-	•	-	QFN24	
IP5219	2.4A	2.1A	1,2,3,4	٧	v	V	v	٧	•	-	QFN24	
IP5310	3.1A	3.0A	1,2,3,4	٧	V	~	Z	٧	-	-	QFN32	
IP5506	2.1A	2.4A	Digital tube	¥	V	Ţ	-	-	-	-	eSOP16	
IP5508	2.1A	2.4A	Digital tube	V	×	×	v	-	-	-	QFN32	
IP5330	3.1A	3A	Digital tube	v	v	-	v	v	-	-	QFN32	
IP5322	18W	4.0A	1,2,3,4	V	٧	v	v	-	٧	-	QFN32	
IP5328P	18W	4.0A	1,2,3,4	V	v	v	V	v	٧	٧	QFN40	

6. Customized model list

Model number	Specification
IP5330_BZ_VOUT12	Standard IP5330, supports 188 digital tube with OUT icon
IP5330_BZ_188	Supports 188 digital tube without OUT icon

7. Absolute Maximum Ratings

Parameter	Symbol	Value	Unit
Input Voltage Range	V _{IN}	-0.3 ~ 12	v
VBUS Input Voltage Range	V _{BUS}	-0.3 ~ 6	v
Junction Temperature Range	Tj	-40 ~ 150	Ĉ
Storage Temperature Range	Tstg	-60 ~ 150	C
Thermal Resistance	θ _{JA}	40	℃/w
(Junction to Ambient)	UJA	40	~///
ESD (Human Body Model)	ESD	4	КV

*Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. Exposure to Absolute Maximum Rated conditions for extended periods may affect device reliability. *Voltages are referenced to GND unless otherwise noted.

8. Recommended Operating Conditions

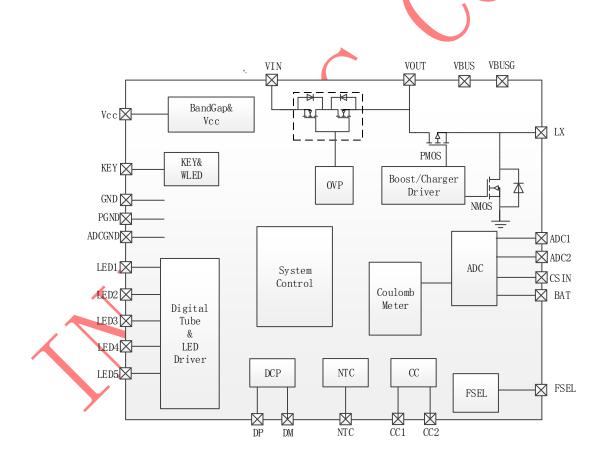
Parameter	Symbol	Min.	Тур.	Max.	Unit
Input Voltage	V_{IN}, V_{BUS}	4.5	5	5.8	v
Operating Temperature	T _A	0		70	°C

*Devices' performance cannot be guaranteed when working beyond those Recommended Operating Conditions.

9. Electrical Characteristics

Unless otherwise specified, TA=25 C, L=1uH

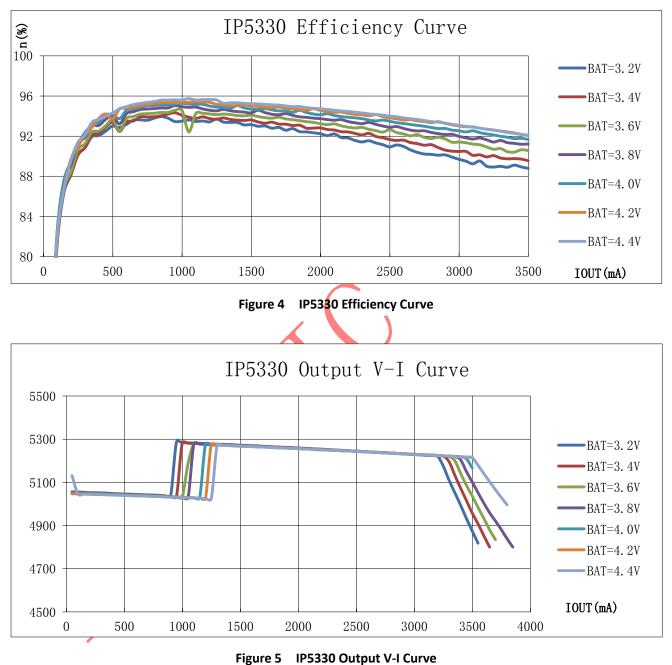
Parameter	Symbol	Test Conditions	Min.	Тур.	Max.	Unit
Charging System						
Input Voltage		VBAT=3.7V	4.5	5	5.8	V
Input Over Voltage	V _{INOV}		5.6	5.8	6	V
Input Under Voltage V _{INUV}			4.4	4.5	4.6	V
	CV _{4.2V}	4.2V battery configuration	4.18	4.21	4.24	V
Constant Charge Voltage	CV _{4.30V}	4.3V battery configuration	4.28	4.31	4.34	V
Constant Charge Voltage	CV _{4.35V}	4.35V battery configuration	4.33	4.36	4.4	V
	CV _{4.4V}	4.4V battery configuration	4.38	4.41	4.44	V
Charge Stop Current	Ivin _{stop}	VIN=5V	200	300	500	mA
Charge Current	I _{VIN}	VIN=5V, VBAT=3.7V, VIN port charge current	1.7	2	2.3	А


	I_{VBUS}	VBUS=5V, VBAT=3.7V, Battery current	2.3	2.8	3.2	А
Trickle Charge Current	I _{TRKL}	VIN=5v,BAT=2.7v	100	200	300	mA
Trickle Charge Stop Voltage	V _{TRKL}		2.9	3	3.1	V
Recharge Voltage Threshold	V_{RCH}		4.07	4.1	4.13	V
Charge Cut-Off Time	T_{END}		20	24	28	Hours
Boost System						
Battery Operation Voltage	V_{BAT}		3	3.7	4.4	V
Low Power Shutdown Voltage	V _{BATLOW}	IOUT=1A	2.9	2.95	3.0	V
Dc Output Voltage	V _{OUT}	VBAT=3.7V @0A	5.0	5.12	5.25	V
De Output voltage	V OUT	VBAT=3.7V @3A	5.0	5.25	5.35	V
Output Voltage Ripple ΔV_{OUT}		VBAT=3.0V~4.4V @lout=2A,Cout=100uF	50	100	150	mV
Boost Output Current	I _{vout}	VBAT=3.0V~4.4V 0		3		А
Boost Overcurrent Shut Down Threshold	I _{shut}	VBAT=3.0V~4,4V		3.5		А
Load Overcurrent Detect Time	TUVD	Duration of output voltage under 4.2V		30		ms
Control System		Y				
Curitala Engeneration	fs	Discharge switch frequency		600		KHz
Switch Frequency		Charge switch frequency		500		KHz
PMOS On Resistance				30		mΩ
NMOS On Resistance				25		mΩ
VOUT PMOS On Resistance		VIN=5V		90		mΩ
Vout Pmos Overcurrent	I _{IDOCP}	VIN=5V		3		А
Vcc Voltage	VCC	Vbat=3.7V		3.3		V
Battery Input Standby Current	I _{STB}	VIN=0V, VBAT=3.7V		80	150	uA
LED Light Driving Current	llight		5	10	15	mA
IO Driving Current	I_{Gpio}		4	5	8	mA
Light Load Shut Down Detect Time	T _{loadD}	Load current less than 100mA	27	30	33	S

Light Load Shut Down Current	I _{plout}	VBAT=3.7V @R9=R17= 10 milliohms	30	60	100	mA
Short Press On Key Wake Up Time	T _{OnDebou} nce		100		300	ms
Long Press On Key Wake Up Time	T _{Keylight}		2		3	S
Thermal Shut Down Temperature	T _{OTP}	Rising temperature	130	140	150	°C
Thermal Shut Down Hysteresis	ΔT_{OTP}		30	40	50	°C

10. Function Description

System Diagram



Boost

IP5330 integrates a boost dc-dc converter with 5V3A output. Switching frequency: 600KHz; input: 3.7V;

efficiency @ 5V/3A output: 92%. Built-in soft start function, to prevent the shock current at the start. Integrated output over current, short circuit, over voltage, over temperature and other protections, to ensure the system stable and reliable. The output current of the boost system can be automatically adjusted with the temperature to ensure that the IC is below the setted temperature.

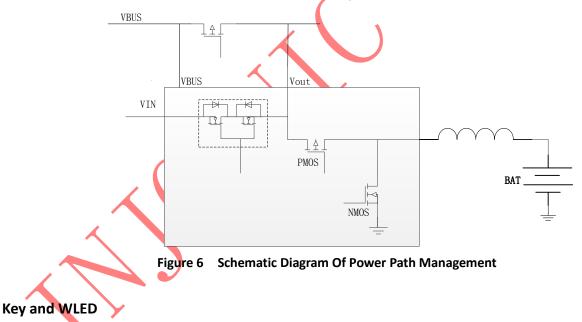
Charge

IP5330 integrates a constant current and constant voltage Li battery charging management system with synchronous switch. When the battery voltage is lower than 3V, enters trickle charging stage and trickle charging current is less than 200mA; when the battery voltage is higher than 3V, enters constant current charging stage; when the battery voltage is near the preset battery voltage, enters constant voltage charging stage. When the

charging is accomplished, once the battery voltage falls under 4.1V, battery charging will be restarted.

IP5330 supports TYPEC port 3A charging, Micro B port 2A charging, and at the same time detects the input voltage and IC temperature to automatically adjust the charging current.

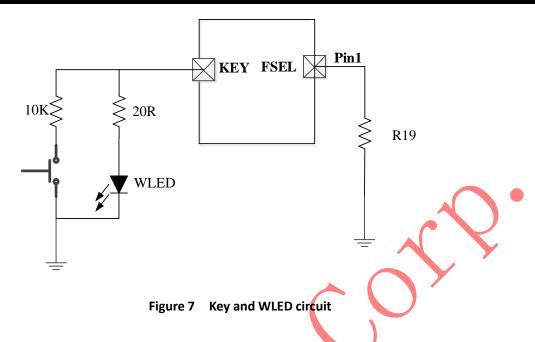
IP5330 supports Micro B (VIN) insertion and charging, or Type C (VBUS) insertion and charging. Plug in first, charge first.


When IP5330 is in charging state, it will detect whether the VOUT (output voltage) is higher than 4.55V. If it is higher than 4.55V, it will charge the battery with the maximum current; if it is lower than 4.55V, it will reduce the charging current and automatically adapt to the load output capacity of the adapter.

IP5330 built-in power path management supports charging and discharging at the same time. PMOS of VIN or VBUS and PMOS of VOUT will be turned on to charge external devices when charging.

When charging and discharging at the same time, IP5330 will test the output current of port A. If the output current of port A is greater than 200mA, reduce the battery charging current to the minimum, and give priority to charge the device at port A.

IP5330 will test the connection of port C when charging and discharging at the same time. If there is equipment in charging outside port C, IP5330 will reduce the battery charging current less than 1A, and give priority to the equipment at port C.

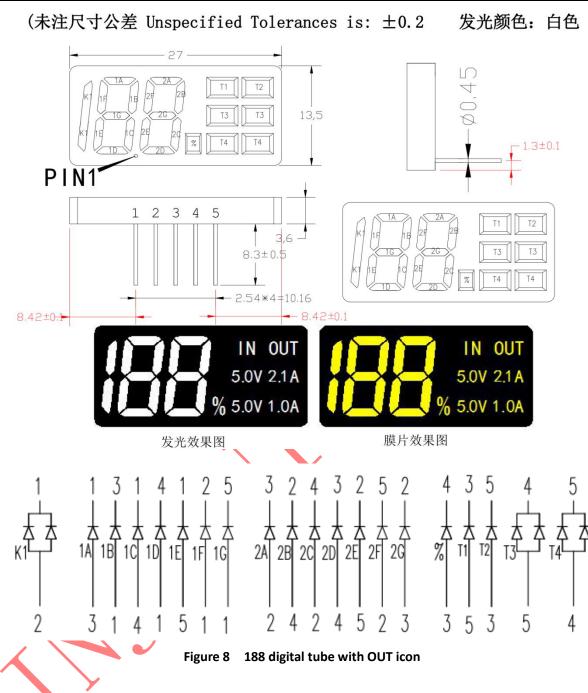

When IP5330 is charging and discharging at the same time, PMOS of VIN and VOUT has such functions as over temperature, 3A over current and short circuit protection.

IP5330 has built-in Key and WLED function, which supports external PIN selection, Key startup & shutdown and switch lighting. Specific reference is as follows:

R19	Key mode
10K	Short press to boot; Press the button twice in a row to shut down;Long press 2s switch to flashlight
24K	Short press to boot;Long press 2s switch to flashlight
39K	Short press to boot; Press the button twice in a row to switch flashlight
56K	Short press to boot; Press the button twice in a row to switch flashlight;Long press 2s to power off
68K	Support vibration switch to power on/off

Coulombmeter and battery level display

IP5330 has built-in accurate coulomb electricity meter algorithm, according to the battery capacity accurately display the remaining battery power.


IP5330 can be customized to support LED lamp, type 88, type 188, type 888 digital tube and other power display.

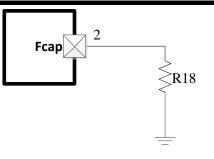
IP5330_BZ_VOUT12 supports 188 digital tube with OUT icon

Digital	Charg	e	Discharge		
Tube	Not Fully Charged	Fully Charged	Power Is Less Than 5%	Power Is More Than 5%	
5pin 188	IN LED 0.5Hz Flash	100% On	The Ones Place LED 1Hz Flash	5%-100% On	



IP5330_BZ_188 supports 188 digital tube without OUT icon

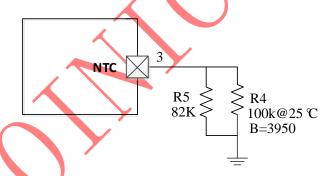
Digital	Charge	e	Discharge		
Tube	Not Fully Charged	Fully Charged	Power Is Less Than 5%	Power Is More Than 5%	
188					
(YF2252S	0%-99% 0.5Hz Flash	100% On	0%-5% 1Hz Flash	5%-100% On	
R-5)					



IP5330 supports the external setting of the initial capacity of the battery. The residual capacity of the battery can be managed by integrating the current and time of the battery end, which can accurately display the current capacity of the battery. At the same time, IP5330 supports a complete charging process from 0% to 100% to automatically calibrate the total capacity of the current battery, so as to manage the actual capacity of the battery more reasonably.

IP5330 initial capacity formula setted by external PIN: battery capacity Fcap=(R₁₈-25)*400+5000, (resistance R₁₈ unit is Kohm, Fcap unit is mAH, support capacity range is 5000 mAH to 25000 mAH).

IP5330


Auto Detection On Phone Attachment And Enter Standby Mode Automatically With Light Load

After IP5330 detects the phone's insertion, it will immediately wake up from standby mode and turn on the boost 5V to charge the phone.

IP5330 automatically enters standby state when Vout end load current is less than 70mA and lasts for 30s.

NTC

IP5330 can connect NTC resistance on NTC pin to realize the NTC function of the battery. NTC pin outputs 20uA current then detects the voltage on NTC resistance to determine the present battery temperature.

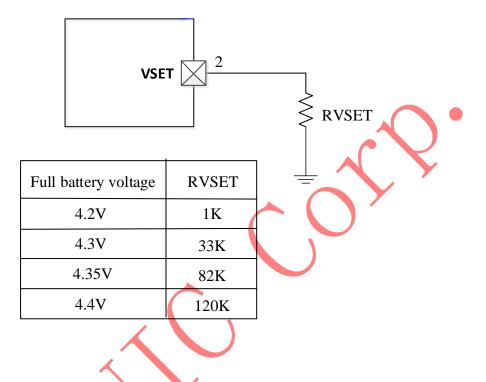
Under charging state:

Voltage on NTC resistance is higher than 1.3V meaning the battery temperature is under 0 centigrade, then stop charging the battery;

Voltage on NTC resistance is lower than 0.5V meaning the battery temperature is above 50 centigrade, then stop charging the battery;

Under discharging state:

Voltage on NTC resistance is higher than 1.47V meaning the battery temperature is under -15 centigrade, stop discharging;


Voltage on NTC resistance is lower than 0.44V meaning the battery temperature is above 55 centigrade, stop discharging.

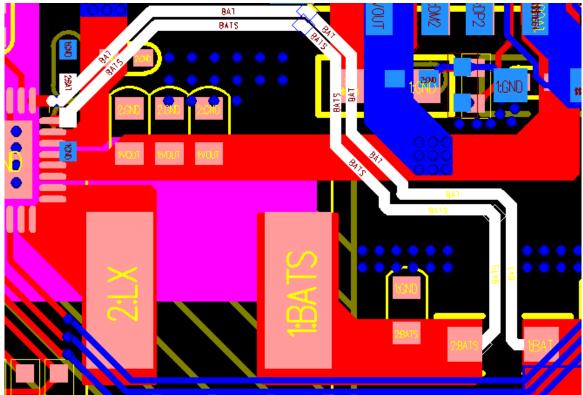
If NTC is not required in the scheme, the NTC pin shall be connected 51K to GND. NTC pin shall not float, otherwise abnormal charging and discharging may be caused.

Full Battery Voltage Setting

IP5330 can choose the full battery voltage by connecting different resistors to VSET pin:

VCC

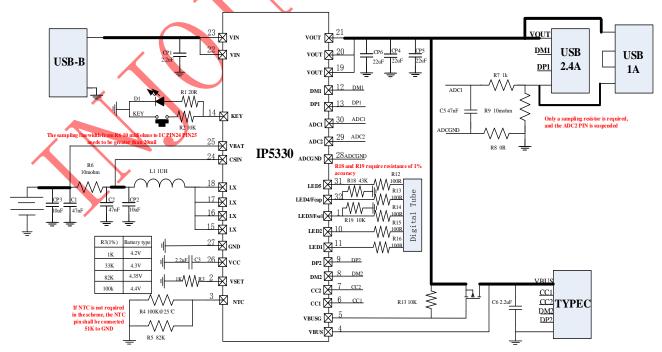
VCC is a normally opened 3.3V LDO. Load capacity is 30mA. External connect a 2.2uF capacitor to GND.


11. Schematic And PCB Layout

 Three 22uF ceramic capacitors (C3, C4 and C5) are required for IP5330 VOUT PIN (19, 20 and 21 PIN), which cannot be replaced by electrolytic capacitors; In PCB design, the capacitor on VOUT should be placed as close as possible to the VOUT pin, and the capacitor's ground should be drilled nearby. The circuit between the capacitor and EPAD should be as small as possible. It is required that there should be no wiring on the back of PCB to cut off the VOUT capacitor to the IP5330 EPAD.

2. IP5330 detects battery current by sampling resistance of 10 milliohms; For the 24th and 25th pins of IP5330, they are required to use the differential form to IP5330 PIN directly from the leads at both ends of the 10 milliohms resistor. At the same time, the PIN shall be larger than 20mil, and a 47nf capacitor filter shall be placed near each PIN.

12. Typical Application Diagram


IP5330 only needs inductors, capacitors and resistors to realize the complete scheme of mobile power supply.

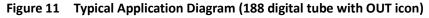
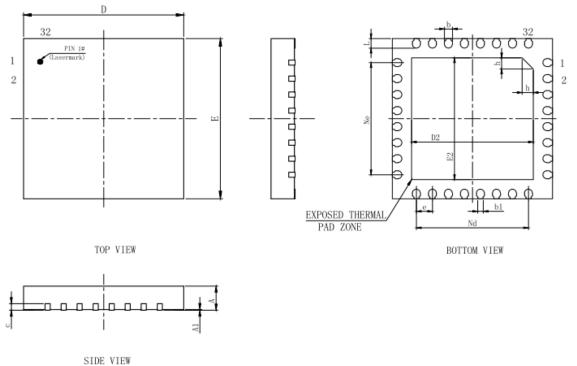

1、 IP5330_BZ_VOUT12 supports 188 digital tube with OUT icon

Figure 10 Typical Application Diagram (188 digital tube with OUT icon)

2、IP5330_BZ_188 supports 188 digital tube without OUT icon


Recommended inductance model:

				D	C	Heat Rating	Saturation	
DARFON PIN	Thickness (mm)	Inductance (uH)	Tolerance	Resistance		Current	Current	Measuring
				(mΩ)		DC Amp.	DC Amps.	Condition
				Тур.	Max.	ldc(A)Max.	Isat(A)Max.	
SPM70701R0MESQ	5	1	±20%	9	10.2	10.5	13.5	100kHz/1.0V
SPM10101R0MESN	4	1	±20%	6	7	12	18	100kHz/1.0V

13. Package

SYMBOL	MILLIMETER					
STMBOL	MIN	NOM	MAX			
А	0.70	0.75	0.80			
A1	0	0.02	0.05			
b	0.20	0.25	0.30			
b1	0.16REF					
с	0.18	0.20	0.25			
D	4,90	5.00	5,10			
D 2	3.70	3.80	3.90			
е	0. 50BSC					
Ne	3. 50BSC					
Nd	3. 50BSC					
Е	4.90	5.00	5.10			
E2	3.70	3, 80	3.90			
L	0.25	0.30	0.35			
h	0.30	0.35	0.40			
L/F载体尺寸	4.10X4.10					

IMPORTANT NOTICE

INJOINIC TECHNOLOGY and its subsidiaries reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to INJOINIC TECHNOLOGY's terms and conditions of sale supplied at the time of order acknowledgment.

INJOINIC TECHNOLOGY assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using INJOINIC TECHNOLOGY's components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of INJOINIC TECHNOLOGY's components in its applications, notwithstanding any applications-related information or support that may be provided by INJOINIC TECHNOLOGY. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify INJOINIC TECHNOLOGY and its representatives against any damages arising out of the use of any INJOINIC TECHNOLOGY's components in safety-critical applications.

Reproduction of significant portions of INJOINIC TECHNOLOGY's information in INJOINIC TECHNOLOGY's data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. INJOINIC TECHNOLOGY is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

INJOINIC TECHNOLOGY will update this document from time to time. The actual parameters of the product may vary due to different models or other items. This document voids all express and any implied warranties.

Resale of INJOINIC TECHNOLOGY's components or services with statements different from or beyond the parameters stated by INJOINIC TECHNOLOGY for that component or service voids all express and any implied warranties for the associated INJOINIC TECHNOLOGY's component or service and is an unfair and deceptive business practice. INJOINIC TECHNOLOGY is not responsible or liable for any such statements.