

Dual ports Type-C Buck Converter with Fast Charge Protocols of PD3.0/PPS/PD2.0, QC3.0/QC2.0, FCP, AFC, MTK PE+2.0/PE+1.1

1 Features

Synchronous-rectified buck converter

- ♦ Built-in power MOSFET
- ♦ Input voltage range: 8.2V~32V
- ♦ Output voltage range: 3V~20V, adjustable according to the fast charge protocol
- ♦ Output voltage has line compensate function of 50mV/A
- Support CV/CC output mode: CV mode (output current < preset value); CC mode (output current > preset value)

Dual ports fast charge output

- ♦ Support dual ports USB Type-C output
- ♦ Support USB Type-C and USB A output
- ♦ Support dual ports USB A output
- ♦ Support any port fast charge output
- ♦ Dual ports auto plug-in and plug-out detection

• Type-C USB PD protocol output

- ♦ Support 5V, 9V, 12V,15V,20V voltage output
- ♦ Support PD2.0/PD3.0(PPS) output protocol
- ♦ PPS support 3.3~21V adjustable voltage with 20mV/step output

Fast charge output of dual Type-C and dual USB A ports

- ♦ Support 2 ports of Type-C PD output
- ♦ Support 2 ports of BC1.2, Apple, Samsung
- ♦ Support 2 ports of QC3.0 and QC2.0
- ♦ Support 2 ports of MTK PE+2.0 and PE+ 1.1
- Support 2 ports of FCP and SCP
- Support 2 ports of Samsung fast charge: AFC
- ♦ Support 2 ports of OPPO fast charge: VOOC

Multi protection and high reliability

- Support input over voltage and under voltage protection, support output short circuit, over current and over temperature protection
- ♦ DP/DM/CC over voltage protection
- ♦ DP/DM/CC withstand voltage of 30V
- ♦ ESD 4KV, DC withstand voltage of 40V
- Package: 5*5mm QFN32

2 Application

- Car charger
- Fast charge adaptor
- Smart power strip

3 Description

IP6538 is a Synchronous-Rectified Buck Converter which supports multiple fast charge output standards with dual Type-C output ports and dual USB A output ports. It provides solutions for car charger, fast charge adaptor and smart power strip.

IP6538 supports dual Type-C output ports or dual USB A output ports or a Type-C output port plus a USB A port output port. Includes dual ports auto plug detection function, fast charge is supported on any single port, the two ports will output 5V when two ports have attached devices at which the overall output power is 5V/4.8A.

IP6538 has built-in power MOSFET, input voltage range is 4.5V to 32V, output voltage ranges from 3V to 20V with up to 45W power supply. The output voltage and current is auto adjusted dynamically based on the fast charge requirement. IP6538 has a conversion efficiency of up to 96.5% when output 5V/3A.

IP6538 output has CV/CC mode, when the output current is lower than preset value, the output voltage will be constant in CV output mode; when the output current is higher than preset value, the output voltage will decrease in CC output mode.

IP6538 supports output line compensation, when output current increases, the output voltage will increase accordingly that makes up the resistive voltage drop introduced by connection, wire, and PCB traces.

IP6538 supports soft start function that protects the input power source from inrush current at start up.

4 IP6538 Series Product Introduction

	VOUT1	LISP Type C	PDO	5V/3A	9V/3A	12V/2.25A	3.3V-5.9V/3A	3.3V-11V/3A
IP6538-CC		USB Type-C	QC ⁽¹⁾	5V/3.6A	9V/2.5A	12V/2A	1	
	VOUT2	LISP Tuno C	PDO	5V/3A	9V/3A	12V/2.25A	3.3V-5.9V/3A	3.3V-11V/3A
	V0012	USB Type-C	QC ⁽¹⁾	5V/3.6A	9V/2.5A	12V/2A	1	
	VOUT1	USB A	QC ⁽¹⁾	5V/3.6A	9V/2.5A	12V/2A	1	
IP6538_AC ⁽²⁾	VOUT2	USB Type-C	PDO	5V/3A	9V/3A	12V/2.25A	3.3V-5.9V/3A	3.3V-11V/3A
			QC ⁽¹⁾	5V/3.6A	9V/2.5A	12V/2A	1	
IDCESO AA	VOUT1	USBA	QC ⁽¹⁾	5V/3.6A	9V/2.5A	12V/2A	1	
IP6538_AA	VOUT2	USBA	QC ⁽¹⁾	5V/3.6A	9V/2.5A	12V/2A	-	

Notes:

- (1) QC represents the output power of high voltage fast charge.
- (2) PDO of USB type-c port in the table can be customized.
- (3) IP6538_AC VOUT1 should be connected to USB A port; VOUT2 should be connected to USB Type-C port.
- (4) USB A of IP6538_AA and IP6538_AC support SCP and VOOC fast charge protocol.
- (5) IP6538_AC and IP6538_CC USB Type-C output power is same with PDO when attached protocol is PD, it is 24W (5V/3.6A, 9V/2.5A, 12V/2A) when attached protocol is not PD.
- (6) IP6538_AC_18W: USB Type-C PDO is 5V/3A, 9V/2A, 12V/1.5A and PPS 3.3V-5.9V/3A, 3.3V-11V/1.6A.

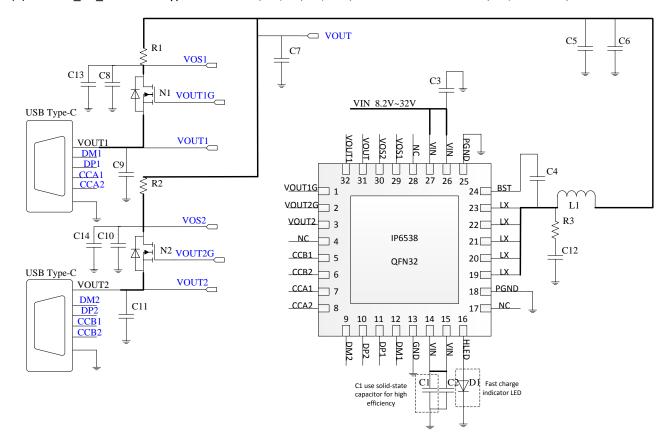


Figure 1. IP6538 CC dual USB Type-C output ports simplified application schematic diagram

5 Pin Functions

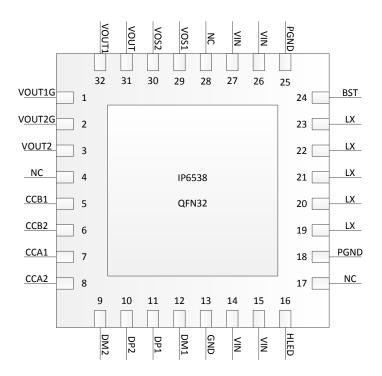


Figure 2. Pin Functions

Pins		Bassintian
Pin No.	Pin Name	Description
1	VOUT1G	Control external NMOS of VOUT1 output
2	VOUT2G	Control external NMOS of VOUT2 output
3	VOUT2	VOUT2 output plug in detection pin
4/17/28	NC	Floating PIN, do not connect
5	CCB1	Group B CC1 (For Type-C 2)
6	CCB2	Group B CC2 (For Type-C 2)
7	CCA1	Group A CC1 (For Type-C 1)
8	CCA2	Group A CC2 (For Type-C 1)
9	DM2	VOUT2 DM
10	DP2	VOUT2 DP
11	DP1	VOUT1 DP
12	DM1	VOUT1 DM
13	GND	Ground
14/15/26/27	VIN	Power input
16	HLED	Fast charge state indicator LED drive
18/25	PGND	Power ground
19/20/21/22/23	LX	DCDC switch point, connect to inductor
24	BST	Connect to bootstrap capacitor
29	VOS1	VOUT1 output current negative sense pin
30	VOS2	VOUT2 output current negative sense pin
31	VOUT	VOUT1/VOUT2 output current positive sense pin

32	VOUT1	VOUT1 output plug in detect pin
33	EPAD	Ground

6 Absolute Maximum Ratings

Parameters	Symbol	Value	Unit
Input Voltage Range	V _{IN}	-0.3 ~ 40	v
LX Voltage Range	V _{LX}	-0.3 ~ VIN+0.3	v
DM/DP/CC Voltage Range	V _{DM/DP/CCA}	-0.3 ~ 30	v
Junction Temperature Range	T _J	-40 ~ 150	င
Storage Temperature Range	Tstg	-60 ~ 150	${\mathfrak C}$
Package Thermal Resistance	θ_{JA}	40	℃/w
Human Body Model (HBM)	ESD	4	KV

^{*}Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. Exposure to Absolute Maximum Rated conditions for extended periods may affect device reliability.

7 Recommended Operating Conditions

Parameters	Symbol	Min.	Тур.	Max	Unit
Input Voltage	V _{IN}	8.2	12/24	32	V

^{*}Devices' performance cannot be guaranteed when working beyond those Recommended Operating Conditions.

^{*}Voltages are referenced to GND unless otherwise noted.

8 Electrical Characteristics

Unless otherwise specified, TA =25 $^{\circ}$ C, L=22uH, VIN=12V, VOUT=5V

Parameters	Symbol	Test Condition	Min.	Тур.	Max	Unit
Input system						
Input voltage	V _{IN}		8.2	12	32	V
January and an analysis	V	Rising voltage	8.1	8.2	8.3	V
Input under voltage	V _{IN-UV}	Falling voltage	7.8	7.9	8	V
Input over veltage	W	Rising voltage	32.7	32.8	33	V
Input over voltage	V _{IN-OV}	Falling voltage	32.3	32.5	32.6	٧
Input quiescent current	Ι _Q	VIN=12V, VOUT=5V/0A		3		mA
Power system						
High-side MOS Ron resistance	R _{DS(ON)}			9		mΩ
Low-side MOS Ron resistance	R _{DS(ON)}			8		mΩ
Switching frequency	F _S			150		KHz
Maximum duty cycle	D _{MAX}	VIN=12V		97		%
Output system						
Output voltage	V _{OUT}		3	5	20	٧
		VIN=12V, VOUT=5V/3A COUT: 220uF+22uF	80	85	90	mV
Output voltage ripple	ΔV _{OUT}	VIN=12V, VOUT=9V/3A COUT: 220uF+22uF	65	70	80	mV
		VIN=24V, VOUT=12V/2.25A COUT: 220uF+22uF	115	125	150	mV
Soft start time	T _{SS}	VIN=12V, VOUT=5V		4		ms
Output line compensate voltage	V _{COMP}	VIN=12V, VOUT=5V, IOUT=1A		50		mV
		VIN=12V, VOUT<=4V		3.6		Α
Single port max output current	1	VIN=12V, 4V <vout<=5v< td=""><td></td><td>3.6</td><td></td><td>Α</td></vout<=5v<>		3.6		Α
in CC mode	I _{OUT}	VIN=12V, 7V <vout<=9v< td=""><td></td><td>3</td><td></td><td>Α</td></vout<=9v<>		3		Α
		VIN=24V, 9V <vout<=12v< td=""><td></td><td>2.25</td><td></td><td>Α</td></vout<=12v<>		2.25		Α
Output hiccup restart voltage	V _{OUT}	Hiccup restart voltage when output enter CC mode (VOUT preset voltage >=		3.2		V

IP6538

		5V)		
		Hiccup restart voltage when output enter CC mode (VOUT preset voltage < 5V)	 2.7	 >
No-load output voltage	V _{out1}	VIN=12V, IP6538_AC no	 5	 V
No-load output voltage	V _{out2}	device connected	 0	 V
DPDM over voltage protection voltage	V _{OVP_DPD}	VIN=12V, VOUT=5V	 4.8	 V
CC over voltage protection voltage	V _{OVP_CC}	VIN=12V, VOUT=5V	 6.5	 ٧
Thermal shutdown temperature	T _{OTP}	Rising temperature	 150	 $^{\circ}\!\mathbb{C}$
Thermal shutdown temperature hysteresis	ΔT_{OTP}		 35	 ${\mathbb C}$

9 Function Description

Synchronous-Rectified Buck Converter

IP6538 integrate a Synchronous-Rectified Buck Converter, input voltage range is 8.2V~32V, output voltage range is 3V~20V, maximum dual port output current is 4.8A.

IP6538 integrate power switch MOSFET with 150kHz working frequency.

The conversion efficiency is 96.5% at VIN=24V, VOUT=5V/3A. The conversion efficiency is 95.3% at VIN=12V, VOUT=5V/4.8A. The conversion efficiency is 94.1% at VIN=24V, VOUT=5V/4.8A.

IP6538 auto adjust output voltage and current according to the fast charge requirement.

IP6538 has soft start function, preventing the huge inrush current cause damage to the IC.

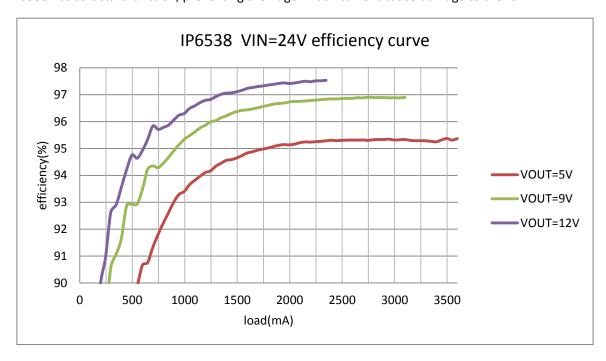


Figure 3. IP6538 output efficiency curve when VIN = 24V

7 / 17

V1.1

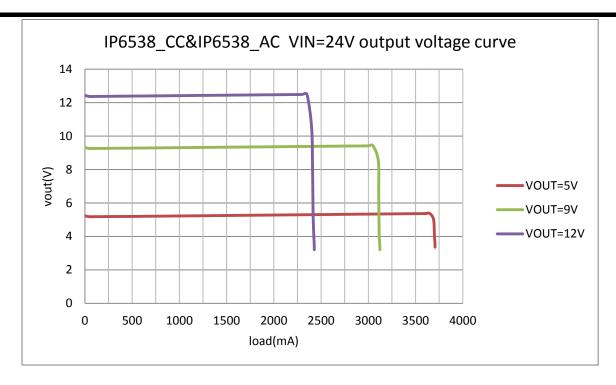


Figure 4. IP6538_CC and IP6538_AC Vout-lout cureve when VIN=24V

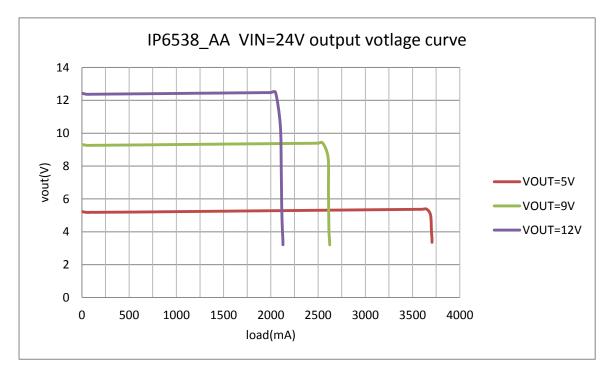


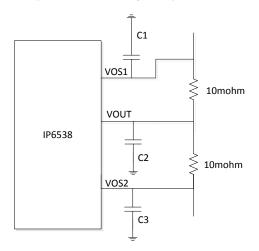
Figure 5. IP6538_AA Vout-lout curve when VIN=24V

Output Voltage Line Compensation Function

IP6538 output support line compensation function: the output voltage will increase 50mV as output current increase 1A.

8 / 17

V1.1


Output CC/CV Character

IP6538 output has CV/CC mode: when the output current is lower than preset value, the output is in CV mode with constant voltage; when the output current is higher than preset value, the output is in CC mode with decreasing output voltage.

When VOUT preset voltage is higher or equal to 5V, if the output voltage is lower than 3.2V, the output will be shut down and hiccup restart after 2sec; When VOUT preset voltage is lower than 5V, if the output voltage is lower than 2.7V, the output will be shut down and hiccup restart after 2sec.

Output CC Current Set

IP6538 VOUT1 output current limit can be adjusted by regulate the 10mOhm sensing resistor between VOUT and VOS1. VOUT2 output current limit can be adjusted by regulate the 10mOhm sensing resistor between VOUT and VOS2. The load current is measured by detect the voltage drop between VOUT and VOS.

For IP6538 CC and IP6538 AC, different voltage is mapped to different current limit value shown below:

Vout (V) voltage	5V	9V	12V
Iout1(A) current limit	3.6A	ЗА	2.25A
VOUT-VOS1	36mV	30mV	22.5mV

When the value of 10mOhm current detect resistor is changed, the current limit of VOUT1 and VOUT2 will change accordingly.

In PCB layout, pay attention to the trace routing of VOS1/VOS2 and VOUT, the trace should go out directly from the two side of 10mOhm resistor, avoiding introduce current limit deviation because of additional PCB trace resistor. Other than that, the 10mOhm resistor should use alloy resistor with good temperature coefficient (100ppm) and high precision of 1%.

Protection Funciton

IP6538 will detect the VIN voltage, if VIN voltage is lower than 7.9V, IP6538 will enter standby mode and shut down the output.

IP6538 support input over voltage protection: when the VIN voltage is higher than 32.8, IP6538 determines the VIN is over voltage and shutdown the output; when VIN decrease under 32.5V, IP6538 determines the input voltage recovers and opens the output.

IP6538 support output under voltage protection: when VOUT voltage is lower or equals 5V, if the VOUT voltage is lower than 3.2V, IP6538 determines the output is under voltage and will shut down the output and hiccup restart after 2sec.

IP6538 support short circuit protect, 4ms after the circuit is started, if VOUT voltage is under 3.2V, IP6538 determines the output is short circuit and will shut down the output and hiccup restart after 2sec.

IP6538 support DP/DM/CC over voltage protection, when the DP1/DM1/DP2/DM2 voltage is higher than 4.8V, or when the CCA1/CCA2/CCB1/CCB2 voltage is higher than 6.5V, IP6538 determines the signals are over voltage and will shut down the output and hiccup restart after 2sec.

IP6538 support over temperature protection: when the temperature detected is higher than 150° C, the output will be shut down. When the temperature decreases below 115° C, IP6538 determines the temperature has recovered and will restart the output.

When the junction temperature is high, the output voltage and current will be adjusted automatically by IP6538 to keep the constant temperature of the junction temperature.

Dual Fast Charge Output Ports

IP6538 support two USB output ports: dual USB Type-C ports or dual USB A ports or USB A port plus USB Type-C port. Any port support fast charge output when working along, when the two ports are working at the same time, both ports output 5V.

IP6538_AC and IP6538_CC single port output power 5V/3.6A, 9V/3A, and 12V/2.25A.

IP6538 AA single port output power 5V/3.6A, 9V/2.5A, and 12V/2A.

Dual ports both in working, IP6538 output 5V/3.6A for single port and 5V/4.8A for two ports together, current limit is based on single port.

IP6538 integrate dual port auto plug detection function, any ports plug in or plug out can be detected and the USB ports will be open or shut down based on the detect result.

Output Fast Charge Protocol

IP6538 support fast charge protocol:

- ♦ Support BC1.2, Apple, Samsung
- ♦ Support Qualcomm QC2.0, QC3.0
- ♦ Support MTK PE+1.1 and MTK PE+2.0
- ♦ Support Huawei Fast charge: FCP and SCP
- ♦ Support OPPO fast charge : VOOC

Type-C Port and USB PD Protocol

IP6538_CC support dual ports Type-C output and USB PD2.0/PD3.0 (PPS) protocol, USB PD protocol output 27W; Package broadcast: 5V/3A, 9V/3A, 12V/2.25A and PPS 3.3V-5.9V/3A, 3.3V-11V/3A.

IP6538_AC support single port Type-C output and USB PD2.0/PD3.0 (PPS) , USB PD protocol output 27W; Package broadcast: 5V/3A, 9V/3A, 12V/2.25A and PPS 3.3V-5.9V/3A, 3.3V-11V/3A.

IP6538_AA do not support Type-C output or PD2.0/PD3.0 (PPS) protocol.

IP6538 Type-C port detects the fast charge requirement automatically through DP/DM and CC1/CC2 pins and adjusts the output voltage and current accordingly.

10 Typical Application Schematic Diagram

IP6538 car charging solution only needs MOSFET, inductor, capacitor and resistor.

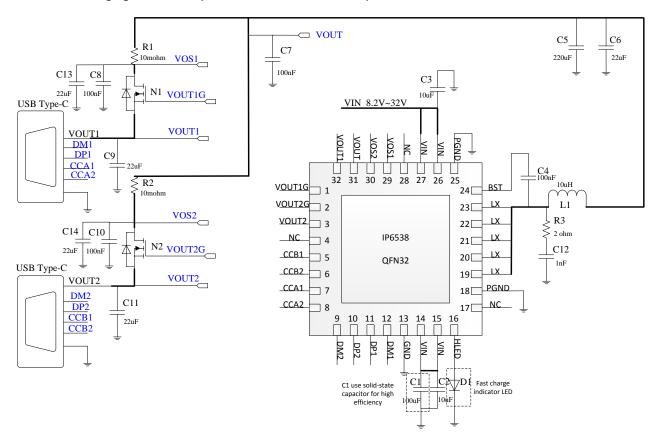


Figure 6. IP6538_CC dual USB Type-C output ports fast charge application schematic diagram

NOTES:

- 1. PIN7/8/11/12 must be connected to USB Type-C 1;
- 2. PIN5/6/9/10 must be connected to USB Type-C 1;
- 3. USB Type-C 1 VBUS must be connected to PIN 32;
- 4. USB Type-C 2 VBUS must be connected to PIN 3;
- 5. C2 and C3 should be placed close to the PIN;
- 6. C7, C8, and C10 should be placed close to the PIN;

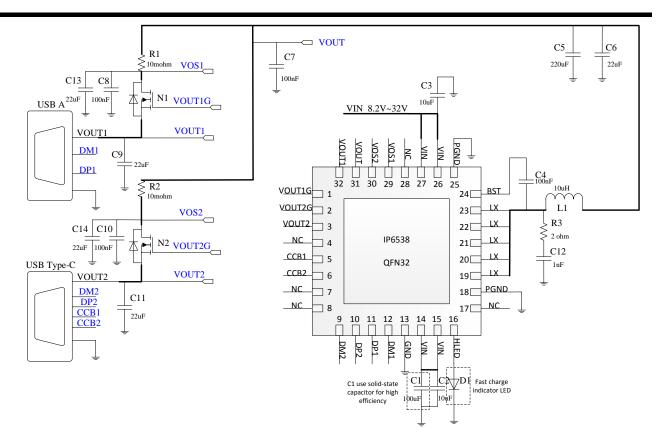


Figure 7. IP6538_AC USB A plus USB Type-C output ports fast charge application schematic diagram

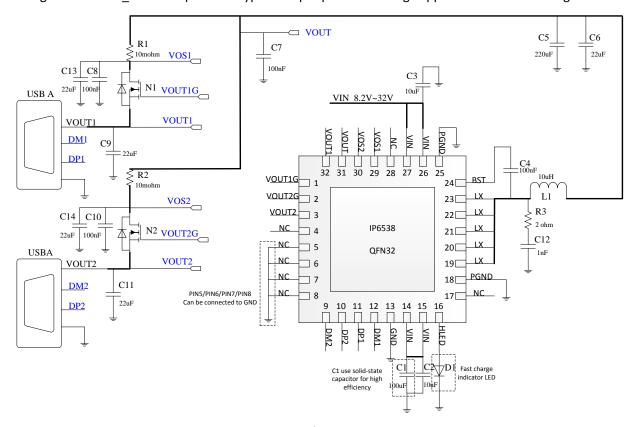


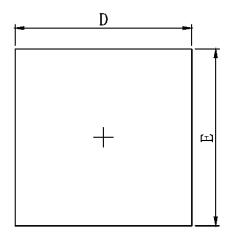
Figure 8. IP6538_AA dual USB A output ports fast charge application schematic diagram

13 / 17

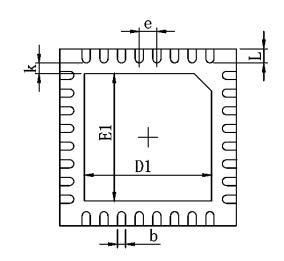
V1.1

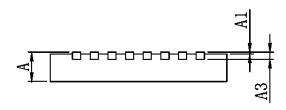
11 BOM List

No.	Part Name	Туре	Unit	Qty	Location	Notes
1	IC	IP6538	PCS	1		
2	TC-220M-4.5A- CS137125	10uH+/-20%, current 5A DCR<12mohm	PCS	1	L1	3L Electronic
3	SMD capacitor	0603 0.1uF 10%	PCS	3	C7, C8, C10	Withstand voltage higher than 25V
4	SMD capacitor	0603 0.1uF 10%	PCS	1	C4	Withstand voltage higher than 10V
5	SMD capacitor	0805 22uF 10%	PCS	5	C6,C9,C11,C 13,C14	Withstand voltage higher than 25V
6	SMD LED	0603	PCS	1	D1	
7	Electrolytic capacitor	100uF/35V	PCS	1	C1	Withstand voltage higher than 35V Use solid-state capacitor will increase efficiency
8	Electrolytic capacitor	220uF/25V	PCS	1	C5	Withstand voltage higher than 25V
9	SMD capacitor	0603 10uF 10%	PCS	3	C2, C3	Withstand voltage higher than 35V
10	SMD resistor	0603 2R 5%	PCS	1	R3	
11	SMD capacitor	0603 1nF, 50V 10%	PCS	1	C12	
12	SMD resistor	1206 10mohm 1% precision, temperature coefficient less than 100ppm	PCS	2	R1, R2	Current sense resistor
13	NMOS	Rds(on)<20m ohm I>=5A	PCS	2	N1, N2	



12 IP series IC Products List


	Charge/	Dual					Pro	tocols	i				Package	
IC Part Discharge	ports	DCP	QC 2.0	QC 3.0	FCP	SCP	AFC	MTK PE	SFCP	PD 2.0	PD3.0 (PPS)	Pkg	P2P	
IP6502	2.4A	-	٧	-	-	-	-	-	-	-	-	-	SOP8	, .
IP6503	3.1A	-	٧	-	-	-	-	-	-	-	-	-	ESOP8	PIN2PIN
IP6503_2A4	2.4A	-	٧	-	-	-	-	-	-	-	-	-	ESOP8	2
IP6503S	3.1A	-	٧	-	-	-	-	-	-	-	-	-	ESOP8	P
IP6503S_2A4	2.4A	-	٧	-	-	-	-	-	-	-	-	-	ESOP8	PIN2PIN
IP6523S_N	3.4A	-	٧	-	-	-	-	-	-	-	-	-	ESOP8	Z
IP6505	24W	-	٧	٧	٧	٧	٧	٧	٧	٧	-	-	ESOP8	
IP6505T	24W	-	٧	٧	٧	٧	٧	٧	٧	٧	-	-	ESOP8	PIN
IP6525T_N	18W	-	٧	٧	٧	٧	-	٧	-	-	-	-	ESOP8	PIN2PIN
IP6510	18W	-	٧	٧	٧	٧	-	٧	-	-	٧	-	ESOP8	
IP6518C	36W	-	٧	٧	٧	٧	٧	٧	٧	٧	٧	-	QFN24	PIN:
IP6518	45W	-	٧	٧	٧	٧	٧	٧	٧	٧	٧	-	QFN24	PIN2PIN
IP6515	4.8A	٧	٧	-	-	-	-	-	-	-	-	-	QFN32	
IP6538_CC	27W	٧	٧	٧	٧	٧	-	٧	٧	-	٧	٧	QFN32	P
IP6538_AC	27W	٧	٧	٧	٧	٧	-	٧	٧	-	٧	٧	QFN32	PIN2PIN
IP6538_AA	24W	٧	٧	٧	٧	٧	-	٧	٧	-	-	-	QFN32	2
IP6527_A	24W	-	٧	٧	٧	٧	٧	٧	٧	-	-	-	QFN32	PIN2PIN
IP6527_C	27W	-	٧	٧	٧	٧	-	٧	٧	-	٧	-	QFN32	2PIN


13 Package

TOP VIEW

BOTTOM VIEW

SIDE VIEW

Symbol	Dimensions I	n Millimeters	Dimensions In Inches			
Symbol	Min.	Max.	Min.	Max.		
Α	0.700	0.800	0.028	0.031		
A1	0.000	0.050	0.000	0.002		
A3	0.203	REF.	0.008	REF.		
D	4.924	5.076	0.194	0.200		
E	4.924	5.076	0.194	0.200		
D1	3.300	3.500	0.130	0.138		
E1	3.300	3.500	0.130	0.138		
k	0.200	OMIN.	0.008	BMIN.		
b	0.200	0.300	0.008	0.012		
е	0.500	TYP.	0.020TYP.			
L	0.324	0.476	0.013	0.019		

IMPORTANT NOTICE

INJOINIC TECHNOLOGY and its subsidiaries reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to INJOINIC TECHNOLOGY's terms and conditions of sale supplied at the time of order acknowledgment.

INJOINIC TECHNOLOGY assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using INJOINIC TECHNOLOGY's components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of INJOINIC TECHNOLOGY's components in its applications, notwithstanding any applications-related information or support that may be provided by INJOINIC TECHNOLOGY. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify INJOINIC TECHNOLOGY and its representatives against any damages arising out of the use of any INJOINIC TECHNOLOGY's components in safety-critical applications.

Reproduction of significant portions of INJOINIC TECHNOLOGY's information in INJOINIC TECHNOLOGY's data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. INJOINIC TECHNOLOGY is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

INJOINIC TECHNOLOGY will update this document from time to time. The actual parameters of the product may vary due to different models or other items. This document voids all express and any implied warranties.

Resale of INJOINIC TECHNOLOGY's components or services with statements different from or beyond the parameters stated by INJOINIC TECHNOLOGY for that component or service voids all express and any implied warranties for the associated INJOINIC TECHNOLOGY's component or service and is an unfair and deceptive business practice. INJOINIC TECHNOLOGY is not responsible or liable for any such statements.