

### Wireless Power Transmitter Compliant with WPC V1.2.4 protocol of 5W

#### **Features**

- Compliant with the WPC V1.2.4 specificatiosn transmitter design
- Support 5W applications
- Input withstand voltage up to 16V
- Integrate NMOS full bridge driver and full bridge power MOS
- Integrate voltage/current demodulator
- Support FOD (Foreign Object Detection) function
  - High sensitivity
  - ♦ Support dynamic FOD
- Low quiescent dissipation and high efficiency
  - ♦ 10mA quiescent current
  - Charging efficiency is up to 79%
- Compatible with NPO and CBB capacitors
- Support Dynamic Power Modulation (DPM) for insufficient USB power source
  - ♦ Support low voltage charger of 5V/500mA
- Input overvoltage, overcurrent protection
- Supports up to 2 LEDs for system states indication
- Pacage: ESOP8

### **Description**

IP6805U is a wireless power transmitter controller SoC that integrates all required functions for the latest WPC Qi V1.2.4 specifications compliant wireless power transmitter design. Support A11 coil, support 5W charging. It used analog PING to detect a RX wireless device for charging with low standby power. Once RX device is detected, the IP6805U establish a communication with the RX wireless device and controls the coil power transfer by adjusting operation frequency, depended on calculating the data packages, received from RX device, with PID algorithm. IP6805U terminate power transfer when RX device is fully charged.

IP6805U integrate full-bridge driver and full bridge power MOS, includes voltage and current two-way ASK demodulation module, and input overvoltage/current protection and FOD module. IP6805U is a highly integrated SoC for small-size and low bom cost solutions and reduced time-to-market.

## **Applications**

- Charge Jacket, wireless charging base
- Car wireless charging device

## **System Functional Diagram**





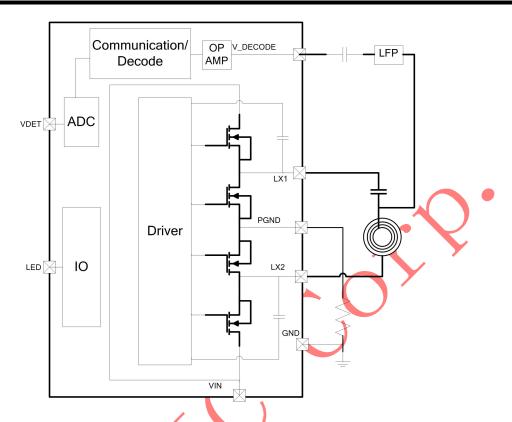
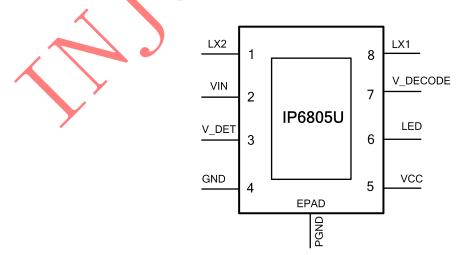




Figure System functional diagram

## 1. Pin Description





| Pin No. | Pin Name       | Description                                                                                                                         |
|---------|----------------|-------------------------------------------------------------------------------------------------------------------------------------|
| 1       | LX2            | H-bridge switching node 2                                                                                                           |
| 2       | VIN            | External voltage input PIN                                                                                                          |
| 3       | V_DET          | Coil voltage sense input                                                                                                            |
| 4       | GND            | Analog Ground, connected to the external 20 $\mbox{m}\Omega$ sampling resistor negative terminal                                    |
| 5       | VCC            | Internal VCC supply, connect 2.2uF capacitor                                                                                        |
| 6       | LED            | LED output                                                                                                                          |
| 7       | V_DECODE       | Voltage communication/demodulation input                                                                                            |
| 8       | LX1            | H-bridge switching node 1                                                                                                           |
| 9       | EPAD<br>(PGND) | The power ground of the internal power MOS transistor is connected to the external 20 $m\Omega$ sampling resistor positive terminal |





## 2. Absolute Maximum Ratings

| Parameters                 | Symbol         | Min  | Max | Unit |
|----------------------------|----------------|------|-----|------|
| Input Voltage Range        | VIN            | -0.3 | 16  | v    |
| Junction Temperature Range | T <sub>J</sub> | -40  | 125 | င    |
| Storage Temperature Range  | Tstg           | -60  | 125 | င    |
| Package Thermal Resistance | $\theta_{JA}$  | 40   |     | °C/W |
| Human Body Model (HBM)     | ESD            | 41   | (V  | V    |

<sup>\*</sup>Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. Exposure to Absolute Maximum Rated conditions for extended periods may affect device reliability.

## 3. Recommended Operating Conditions

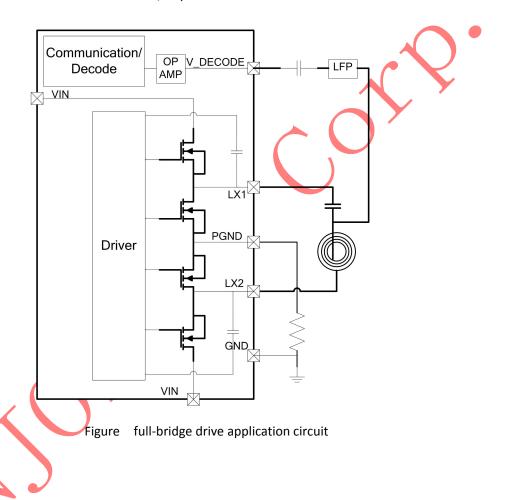
| Parameters              | Symbol | Min     | Тур | Max     | Unit     |
|-------------------------|--------|---------|-----|---------|----------|
| VIN input Voltage Range | VIN    | 4.5     | 5/9 | 12      | <b>V</b> |
| I/O Voltage Range       | LED1   | GND-0.3 |     | VCC+0.3 | V        |

<sup>\*</sup>Devices' performance cannot be guaranteed when working beyond those Recommended Operating Conditions.

### 4. Electrical Characteristics

Unless otherwise specified, TA =25°

| Parameters                         | Symbol                         | Min     | Тур | Max     | Unit       | Test Condition                                 |
|------------------------------------|--------------------------------|---------|-----|---------|------------|------------------------------------------------|
| VIN                                |                                | 4.5     | 5/9 | 12      | V          |                                                |
| VCC                                |                                | 3.8     | 4.2 | VIN     | V          |                                                |
| VIH                                | Input high level               | 0.7xVCC |     |         | V          |                                                |
| VIL                                | Input low level                |         |     | 0.3xVCC | V          |                                                |
| VOH                                | Input high level               |         | VCC |         | V          |                                                |
| VOL                                | Input low level                |         | GND |         | V          |                                                |
| Source<br>current                  | LED1 Output current capability |         | 2   | 4       | mA         | Source current to output high level is 0.8*VCC |
| Thermal shut down temperature      | Т <sub>ОТР</sub>               | 100     | 120 | 140     | $^{\circ}$ | Rising temperature                             |
| Thermal shut<br>down<br>hysteresis | ΔТ <sub>ОТР</sub>              |         | 40  |         | $^{\circ}$ |                                                |


<sup>\*</sup>Voltages are referenced to GND unless otherwise noted.



### 5. Function Description

#### **Full-bridge and Power MOS**

IP6805U includes two symmetry half-bridge drive module with built-in power MOS, PWM frequency adjustable range is 110kHz~205kHz with 0.25kHz/step.




**DPM** 

IP6805U support Dynamic Power Management function for USB power source with insufficient power supply ability, which can guarantee the charging status will not break off or suspend. When the system detect the input voltage is lower than 4.3V, DPM function will be enabled and the transmitting power will be reduced. When the input voltage returns to above 4.75V and the input current is reduced by 200mA compared to when entering DPM, the system exits the DPM state.

#### **Digital Demodulation**

Integrate two-way ASK demodulation module, sampling the voltage and current of the coil separately. Current demodulation, additional separate devices are needed for low pass filters and first amplifier, signals is send to IC for digital demodulation and decode after DC blocked.

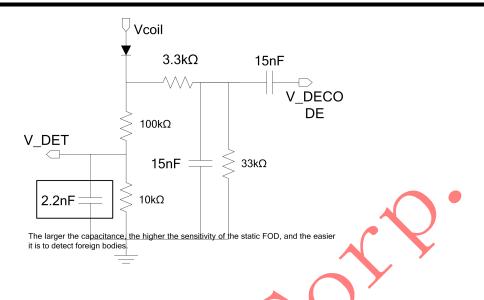




## Figure Current ASK demodulation external circuit

#### FOD parameter adjustment

IP6805U supports static FOD foreign object detection and dynamic FOD foreign object detection;


6 / 14

Static FOD means that foreign objects on the coil can be detected without wireless charging;

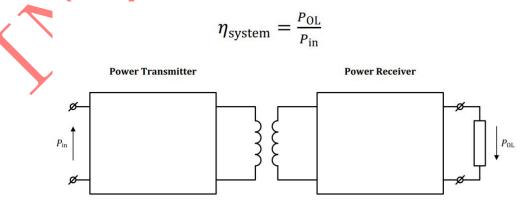
Dynamic FOD means that foreign objects on the coil can be detected while charging wirelessly, Need special custom firmware support if you need to adjust;

The IP6805U can adjust the sensitivity of the static FOD by adjusting the capacitance on the V\_DET pin; the default is to connect the 2.2nF capacitor to ground, standard static FOD sensitivity: the greater the capacitance, the higher the sensitivity of static FOD, and the easier to detect foreign bodies.





#### **LED Status Indicator**


IP6805U can drive 1 LEDs directly through serial current-limit resistor. LEDs' status and system status relations are listed below:

| Status   | LED1               | LED2               |  |  |  |
|----------|--------------------|--------------------|--|--|--|
| Power-on | Flashing three tim | nes simultaneously |  |  |  |
| Standby  | Off                | Off                |  |  |  |
| Charging | On                 | Off                |  |  |  |
| Abnormal | Off                | Flashing           |  |  |  |

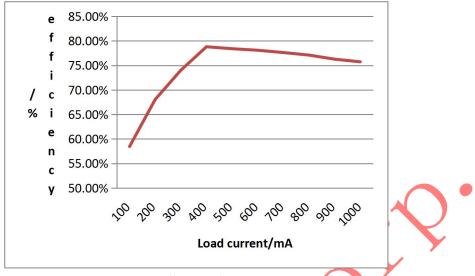
Support configuration tool to modify firmware;

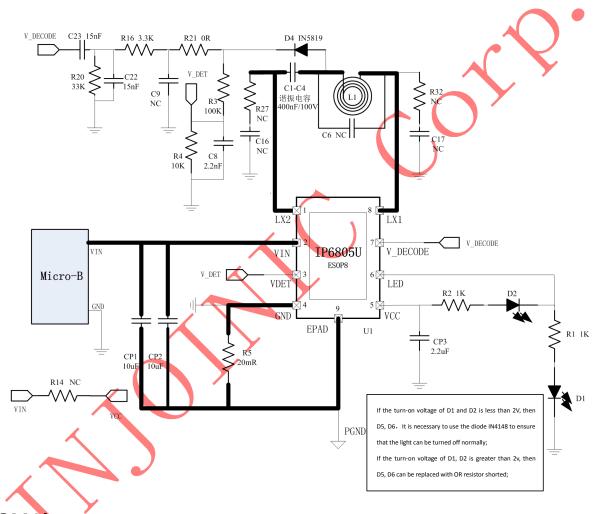
#### **Test Waveform**

Using TI bq51020 solution for RX device, the relationship of efficiency and system output power and test method are outlined below. (VOUT=5V).









Figure System efficiency (using bq51020 RX)





## 6. Typical Application Schematic

IP6805U wireless charging solution only needs capacitors, resistors and few passive devices.

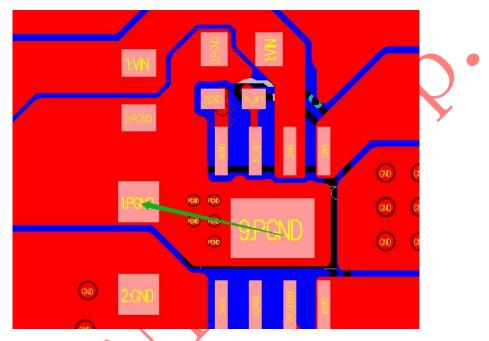


## **BOM List**

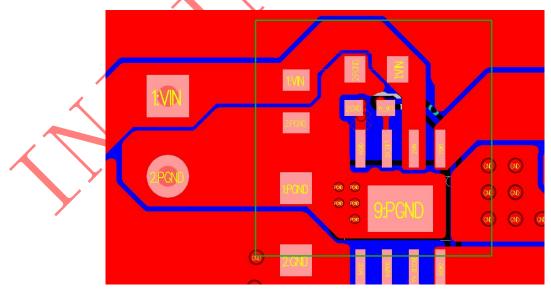
| Item | Part Name              | Description&specification | Description | Qty |
|------|------------------------|---------------------------|-------------|-----|
| 1    | IP6805U                | ESOP8 IP6805U             | U1          | 1   |
| 2    | NPO or CBB capacitor   | 400nF 100V                | C1-C4       | 1   |
| 3    | Wireless charging coil | A11                       | L1          | 1   |
| 4    | SMD capacitor          | 0603C 2.2uF 25V           | CP3         | 1   |
| 5    | SMD capacitor          | 0603C 15nF 25V            | C22 C23     | 2   |
| 6    | SMD capacitor          | 0603C 2.2nF 25V           | C8          | 1   |
| 7    | SMD capacitor          | 0805C 10uF 25V            | CP1 CP2     | 2   |



| 8  | Precision low temperature drift resistor | 1206R 20mR 1%               | R5     | 1 |
|----|------------------------------------------|-----------------------------|--------|---|
| 9  | SMD resistor                             | 0603R 0R                    | R21    | 1 |
| 10 | SMD resistor                             | 0603R 1K                    | R1 R2  | 2 |
| 11 | SMD resistor                             | 0603R 33K                   | R20    | 1 |
| 12 | SMD resistor                             | 0603R 3.3K                  | R16    | 1 |
| 13 | SMD resistor                             | 0603R 100K                  | R3     | 1 |
| 14 | SMD resistor                             | 0603R 10K                   | R4     | 1 |
| 15 | SMD resistor                             | 0603R NC                    | R14    | 1 |
| 16 | NTC thermistor                           | IN5819                      | D4     | 1 |
| 17 | Diode                                    | 0603D                       | D1 D2  | 2 |
|    |                                          | SOD-123A, IN4148,           |        |   |
|    |                                          | Lights up according to D1 / | A Y    |   |
|    |                                          | D2 continuity Voltage       |        |   |
|    |                                          | selection OR resistance     |        |   |
| 18 | Ordinary diode                           | diode                       | D3, D5 | 2 |



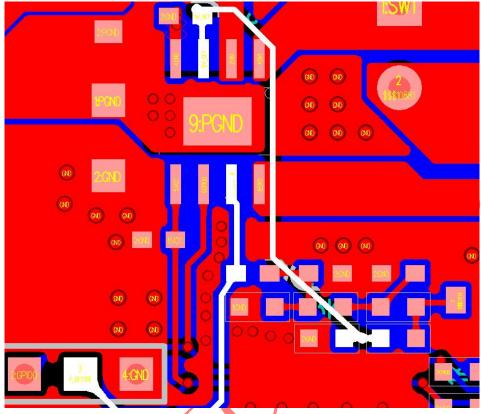

Email: <a href="mailto:service@injoinic.com">service@injoinic.com</a>




### 7. Layout Notifications

1. As shown in the following figure: current sampling resistance and IP6805U's PGND are power lines, which need to be as short as possible, and more holes need to be added when changing layers; The GNDP PIN of the IP6805U should also be as close as possible to the GND of 20 milliohms, reducing the impedance and improving the accuracy;




2. As shown in the following figure: input the filter capacitance between VIN and PGND, the smaller the ring road area, the better; And the capacitor needs to be placed close to the input VIN;



3. As shown in the following figure: The V\_DECODE and V\_DET routes of IP6805U are as far away as possible from resonant capacitors, coils and other power routes, and need to be surrounded by ground.








4. The loop area between the resonant capacitor and the coil and the IP6805U needs to be as small as possible, and away from the low-voltage signal lines such as LED.





## 8. Package





#### 9. IMPORTANT NOTICE

INJOINIC TECHNOLOGY and its subsidiaries reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to INJOINIC TECHNOLOGY's terms and conditions of sale supplied at the time of order acknowledgment.

INJOINIC TECHNOLOGY assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using INJOINIC TECHNOLOGY's components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of INJOINIC TECHNOLOGY's components in its applications, notwithstanding any applications-related information or support that may be provided by INJOINIC TECHNOLOGY. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify INJOINIC TECHNOLOGY and its representatives against any damages arising out of the use of any INJOINIC TECHNOLOGY's components in safety-critical applications.

Reproduction of significant portions of INJOINIC TECHNOLOGY's information in INJOINIC TECHNOLOGY's data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. INJOINIC TECHNOLOGY is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

INJOINIC TECHNOLOGY will update this document from time to time. The actual parameters of the product may vary due to different models or other items. This document voids all express and any implied warranties.

Resale of INJOINIC TECHNOLOGY's components or services with statements different from or beyond the parameters stated by INJOINIC TECHNOLOGY for that component or service voids all express and any implied warranties for the associated INJOINIC TECHNOLOGY's component or service and is an unfair and deceptive business practice. INJOINIC TECHNOLOGY is not responsible or liable for any such statements.



Email: <a href="mailto:service@injoinic.com">service@injoinic.com</a>